About the initiative

The Multifunctional Materials Integration Initiative at the University of Virginia brings researchers from across the School of Engineering to develop ways to tightly co-designing multiple technologies across length scales can enable the next generation of integrated systems capable of achieving “more than Moore” and of interacting with a variety of carriers and environments by tightly coupling multiple disparate materials and integrated processes to create hybrid technologies that enable performance, functionalities, and applications that are not possible with a single homogeneous monolithically integrated process, but that can benefit from a similar cost scale.

Multi-functional integration can also fast-track the development of experimental devices in promising materials by integrating them across multiple scales with more mature, robust technologies across a variety of scales, to reach system-level designs long before they would be feasible as stand-alone technologies. As integrated technologies, these systems will bridge from nanoscale to macroscale, while spanning the full electromagnetic spectrum from DC to daylight. This will require designers to work across traditional material platforms (semiconductors, oxides, soft matter, etc.), necessitating collaboration between traditional disciplines both horizontally in various physical domains (electron-based research collaborating with phonon- spin-based research, collaborating with research on harsh environments and energy transport) as well as vertically at various levels of complexity and abstraction.

The University of Virginia is actively hiring multiple tenure track faculty as well as graduate student positions in this area.  More information available on the Jobs page.